
Continuous Control with Deep Reinforcement Learning
CSE510 – Introduction to Reinforcement Learning

Presented by Vishva Nitin Patel and Leena Manohar Patil under the guidance of Professor Alina Vereshchaka

The Primary Challenge in RL

The major challenge in RL is that, we are exposing the agent to
an unknown environment where, it doesn’t know the
consequences of it’s actions and also, it has no idea about what
state it is in. It just receives the reward when performing an
action, and has to make decisions based on them. Hence, it
becomes difficult for the agent firstly, to get familiar with the
environment and then to optimize it’s policy.

Supervised Learning
y f(x)
Given: y, x
To Find: f

Unsupervised Learning
f(x)

Given: x
To Find: f

Reinforcement Learning
y f(x),r
Given: x, r
To Find: f

x input, y output, f function that maps y to x, r reward

Reinforcement Learning (RL) is a branch of Machine Learning
that deals with methods of mapping the situations/states to
actions — in order to maximize a numerical reward.

Introduction

Markov Decision Process (MDP)
Markov Decision Process is an approach that is only concerned
with the next State 'S+1' and the decision of reaching the next
state is solely based on the current State at the current time.
Our task is find a policy π : S → A which our agent will use to
take actions in the environment which will maximize the
cumulative reward, where γ ∈ [0, 1] is the discounting factor
(used to give more weight to more immediate rewards).

Key-points:

 In MDP, ‘only the present matters’
 Components involved in MDP:

o State(S) – current situation or position of the agent
o Model(P(S,A,S’)) – Transition Probabilities
o Actions(A) – Things agent can do
o Rewards(R)

Problem

Deep - RL Methods
Difference between value and policy:

Value is the estimated total returns for a given state and
action pair.

Policy is set of optimal state and action pairs.

We can implement RL Algorithm primarily in two ways:

Value based Learning Approach

1. Find the Q-value for each state-action pair

2. Execute the policy based on the maximum Q value

Policy based Learning Approach

1. Find the optimal policy by calculating the probability
distribution, given the state, over all possible actions and
then sample the probabilities.

Environments
OpenAI Gym

OpenAI gym provides a comprehensive library of
environments which can be used to work with Reinforcement
Learning algorithms. It provide a standardize steps for
creating and working with any environment.

Following environments were being used:

Deep Q-Network (DQN)
• Q-Learning, but with Deep Neural Network for function

approximation.

• Q-Learning fails because of overestimation of action
values. These overestimation result from a positive bias
introduced by using the maximum expected action value
for approximation.

• In reinforcement learning, both the input and the target
change constantly during the process and make training
unstable.

DQN overcomes unstable learning by mainly 4 techniques:
 Experience Replay
 Target Network
 Clipping Rewards
 Skipping Frames

Double Deep Q-Network (DDQN)
We apply the double estimator to Deep Q-learning to
construct Double Deep Q-learning (Double DQN), a new off-
policy reinforcement learning algorithm.

DDQN uses two separate Q-value estimators, each of which is
used to update the other. Using these independent
estimators, we can get unbiased Q-value estimates of the
actions selected using the opposite estimator.

We can thus avoid maximization bias by disentangling our
updates from biased estimates.

Deep Deterministic Policy Gradient
(DDPG)

• DDPG is a model-free off-policy actor-critic algorithm,
combining Deterministic Policy Gradient (DPG) with Deep
Q-Network (DQN).

• DQN stabilizes the learning of Q-function by experience
replay and frozen target network.

• DQN works in discrete space, and DDPG extends it to
continuous space with the actor-critic framework while
learning a deterministic policy.

• DDPG is a policy gradient algorithm that uses a stochastic
behavior policy for good exploration but estimates a
deterministic target policy.

• It performs policy iteration to evaluate the policy, and then
follow the policy gradient to maximize performance.

Reward Graphs

Conclusion

References
1. CSE510 Lecture Slides
2. https://gym.openai.com/envs/
3. https://arxiv.org/abs/1509.02971
4. https://www.youtube.com/channel/UC58v9cLitc8VaCjrcK

yAbrw
5. https://classroom.udacity.com/courses/ud600

DDPG on OpenAI gym environments as in Pendulum, Lunar
lander and Bipedal walker. It is observed that the agent
gradually learns to maximize it’s rewards within the span of
300- 350 episodes, by the end of which, it learns to get
maximum possible scores. Although, in case of Bipedal
Environment, it is observed that the learning is a bit
overfitted. This could be adjusted by tuning the hyper-
parameters of the neural nets.
When comparing the Lunar Lander environments tested for
DDPG, DQN and DDQN Environments, it is quite evident from
the graphs that the rate of learning by the agent is
comparatively better in DDPG with a continuous action
space, rather that the discrete space in case of DQN and
DDQN.

 Pendulum

Problem: The pendulum is inverted and
randomly swings to any direction.

Goal: To control the pendulum to keep
it always in upright direction

 Lunar Lander

Problem: The pendulum is inverted and
randomly swings to any direction.

Goal: To control the pendulum to keep
it always in upright direction

 Bipedal Walker

Problem: This is a robot walker
environment learning to move forward.

Goal: To move the robot forward.

Performance for Pendulum

against DDPG

Performance for Lunar Lander against DDQN and DDPG

Performance for Bipedal

Walker against DDQN

Contacts:
leenaman@buffalo.edu

vishvani@buffalo.edu

RL can be used to solve a wide
scope of problems, where, the
agent has been observed to learn
gradually and eventually exceed
human control. We can observe
below the comparison of
numerous Atari game RL is used
to solve and it’s comparison to
human control:

Action(A)State(St+1)
Reward(Rt+1)

